Magmatic Differentiation at Dabbahu Volcano, Afar

Lorraine Field¹, Jon Blundy¹, Andy Calvert² and Gezahegn Yirgu³ ¹University of Bristol, ²USGS Menlo Park, ³Addis Ababa University

Dabbahu Composite Volcano

Northernmost end of active Manda-Hararo Rift Segment West of 2005 Da'Ure Vent Small offset from Alayta Rift Segment to North

Wide range of magma types erupted from same vent/fissure system

Extreme chemical differentiation

Rocks are phenocryst-poor – close to liquid compositions Olivine + plagioclase + cpx stable over entire differentiation trend

New Ar-Ar dating

- •Dabbahu is ≤100,000 years old
- •~35 km³ erupted volume = 0.01 m³ s⁻¹
- •No evidence of temporal chemical evolution

Mineralogical evolution

olivine

feldspar

clinopyroxene

Geochemistry

Constant ratios of incompatible elements suggest single magmatic lineage from parental axial basalt

10-fold increase in incompatible trace elements

- •Some high CO₂ inclusions gas fluxing?
- •Crystallisation of small magma batches over range of pressures

Depths of entrapment

Stacked sills at 2-6 km depth gives good fit to INSAR data

Constraints on crystallisation conditions from MELTS and pMELTS modelling

Observation	Constraint
Basaltic parent has mg# = 0.6	Not in mantle equilibrium
Lack of opx	fO ₂ <fmq< td=""></fmq<>
Ilmenite	fO₂≤FMQ-1
An ₈₀ , Fo ₈₀	3 kb>P≥1 kb
Cotectic OI+Plag+Cpx in basalts	3 kb>P≥1 kb, H ₂ O≤0.3 wt%
4±1 wt% H ₂ O in rhyolites	~0.4% H ₂ O in parent
Liquid line of descent (esp. CaO)	P≤3 kb
$Max Al_2O_3 = 17 wt\%$	\leq 0.4 wt% H ₂ O in parent
Extreme mineral variation	≤90% fractional crystallisation

Run models to obtain best fit to whole-rock chemistry, phenocryst assemblage and mineral compositions

LF44 parent, FC, 2 kb, 0.3 wt% H₂O, FMQ-1

Similar results at 3 kb, 0.1 wt% H₂O

Conclusions

- •Shallow differentiation in stacked sills (or dykes) 2-6 km depth
- •Low H₂O content of parent basalt (~0.4 wt%)
- •<10% of basaltic input becomes rhyolite
- •Shallow, dense cumulates
- •Crustal contamination is not *required* by isotope data
- •Thermal budget is critical ~100 ka of silicic magma production
- •Differentiation enabled by reduced magma supply at segment end